第404节

  “首先是推导,其次是实验。”
  “推导?”
  法拉第扶了扶眼镜,重复了一遍这个词,对徐云问道:
  “推导什么东西?”
  徐云没有直接回答问题,而是反问道:
  “法拉第先生,我听说您曾经提出过一个理论,也就是电荷的周围必然存在有电场,对吗?”
  法拉第点了点头。
  学过物理的同学应该都知道。
  法拉第最早引入了电场概念,并提出用电场线表示电场的想法。
  同时还利用磁铁周围的铁屑模拟了磁感线的情况。
  徐云见说微微一笑,压制住心中的情绪,尽量面色平静的说道:
  “我们接下来要推导的,就是电场中存在的一种东西。”
  随后他拿起纸和笔,在纸上画出了一道波浪图。
  也就是正弦函数的图像。
  接着他在图像上画了个圈,对法拉第等人说道:
  “法拉第先生,我们研究物理,目的就是为了从万千变化的自然界的各种现象里,总结出某种一致性。”
  “然后用数学的语言定量、精确的描述这种一致的现象。”
  “比如牛顿先生提出的f=ma,1824年热力学的△s>0、读者=帅逼美女等等……”
  “那么问题来了,在我们现有的世界中,有没有一道数学方程可以描述波呢?”
  法拉第等人沉默片刻,缓缓摇了摇头。
  波。
  这是个生活中非常常见的词,或者说现象。
  除了柰子之外,石头掉进水里产生的是波。
  抖动绳子出现的也是波。
  风吹过湖面产生的还是波。
  早先曾经介绍过。
  1850年的物理学水平其实并不低,此时的科学界已经可以测量出频率、光波长这些比较精细的数值。
  无外乎描述的单位还是负几次方米,不像后世那样有纳米微米的说法罢了。
  在这种情况下。
  自然也曾经有不少人尝试研究过波,远的有小牛,近的有欧拉。
  但遗憾的是。
  由于时代思路的局限性,科学界一直没能推导出一个标准的、可以描述波规律的数学方程。
  不过眼下徐云问出了这种话……
  莫非……
  “罗峰同学,难道肥鱼先生已经推导出了波运动的数学表达式?”
  徐云依旧没有直接回答这个问题,而是继续在纸上写了起来。
  他先在之前绘制出的函数图像上做了个基础的坐标系。
  又在x轴方向上画了个→,写上了一个v字。
  这代表着一个波以一定的速度v向x轴的正方向运动。
  接着徐云解释道:
  “首先我们知道,一个波是在不停地移动的。”
  “这个图像只是波在某个时刻的样子,它下一个时刻就会往右边移动一点。”
  法拉第等人齐齐点了点头。
  这是标准的人话,不难听懂。
  至于波在下个时刻移动了多少也很好计算:
  因为波速为v,所以Δt时间以后这个波就会往右移动v·Δt的距离。
  随后徐云在其中一个波峰上画了个圈,又说道:
  “在数学角度上来说,我们可以把这个波看成一系列的点(x,y)的集合,这样我们就可以用一个函数y=f(x)来描述它,对吧?”
  函数就是一种映射关系,在函数y=f(x)里,每给定一个x,通过一定的操作f(x)就能得到一个y。
  这一对(x,y)就组成了坐标系里的一个点,把所有这种点连起来就得到了一条曲线——这是货真价实的初一概念。
  接着徐云又在旁边写了个t,也就是时间的意思。
  因为单纯的y=f(x),只是描述某一个时刻的波的形状。
  如果想描述一个完整动态的波,就得把时间t考虑进来。
  也就是说波形是随着时间变化的,即:
  图像某个点的纵坐标y不仅跟横轴x有关,还跟时间t有关,这样的话就得用一个二元函数y=f(x,t)来描述一个波。
  但是这样还不够。
  世界上到处都是随着时间、空间变化的东西。
  比如苹果下落、作者被读者吊起来抖,它们跟波的本质区别又在哪呢?
  答案同样很简单:
  波在传播的时候,虽然不同时刻波所在的位置不一样,但是它们的形状始终是一样的。
  也就是说前一秒波是这个形状,一秒之后波虽然不在这个地方了,但是它依然是这个形状。
  这是一个很强的限制条件。
  既然用f(x,t)来描述波,所以波的初始形状(t=0时的形状)就可以表示为f(x,0)。
  经过了时间t之后,波速为v。
  那么这个波就向右边移动了vt的距离,也就是把初始形状f(x,0)往右移动了vt。
  因此徐云又写下了一个式子:
  f(x,t)=f(x-vt,0)。
  接着他看了法拉第一眼。
  在场的这些大佬中,大部分都出自专业科班,只有法拉第是个学徒出身的‘九漏鱼’。
  虽然后来恶补了许多知识,但数学依旧是这位电磁大佬的一个弱项。
  不过令徐云微微放松的是。
  这位电磁学大佬的表情没什么波动,看来暂时还没有掉队。
  于是徐云继续开始了推导。
  “也就是说,只要有一个函数满足f(x,t)=f(x-vt,0),满足任意时刻的形状都等于初始形状平移一段,那么它就表示一个波。”
  “这是纯数学上的描述,但这还不够,我们还需要从物理的角度进行一些分析。”
  “比如……张力。”
  众所周知。
  一根绳子放在地上的时候是静止不动的,我们甩一下就会出现一个波动。
  那么问题来了:
  这个波是怎么传到远方去的呢?
  我们的手只是拽着绳子的一端,并没有碰到绳子的中间,但是当这个波传到中间的时候绳子确实动了。
  绳子会动就表示有力作用在它身上,那么这个力是哪里来的呢?
  答案同样很简单:
  这个力只可能来自绳子相邻点之间的相互作用。
  每个点把自己隔壁的点“拉”一下,隔壁的点就动了——就跟我们列队报数的时候只通知你旁边的那个人一样,这种绳子内部之间的力就叫张力。
  又比如我们用力拉一根绳子,我明明对绳子施加了一个力,但是这根绳子为什么不会被拉长?
  跟我的手最近的那个点为什么不会被拉动?
  答案自然是这个点附近的点,给这个质点施加了一个相反的张力。
  这样这个点一边被拉,另一边被它邻近的点拉,两个力的效果抵消了。
  但是力的作用又是相互的,附近的点给端点施加了一个张力,那么这个附近的点也会受到一个来自端点的拉力。
  然而这个附近的点也没动,所以它也必然会受到更里面点的张力。
  这个过程可以一直传播下去,最后的结果就是这根绳子所有的地方都会张力。
  通过上面的分析,便可以总结出一个概念:
  当一根绳子静止在地面的时候,它处于松弛状态,没有张力。
  但是当一个波传到这里的时候,绳子会变成一个波的形状,这时候就存在张力了。
  正是这种张力让绳子上的点上下振动,所以,分析这种张力对绳子的影响就成了分析波动现象的关键。
  接着徐云又在纸上写下了一个公式:
  f=ma。
  没错。

上一章目录+书签下一章